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Physics H7C Fall 1999 (Strovink)

SOLUTION TO FINAL EXAMINATION

Directions. Do all six problems (weights are indicated). This is a closed-book closed-note exam
except for three 8 1

2 × 11 inch sheets containing any information you wish on both sides. You are free
to approach the proctor to ask questions – but he or she will not give hints and will be obliged to
write your question and its answer on the board. Calculators are allowed but not essential – roots,
circular functions, etc., may be left unevaluated if you do not know them. Use a bluebook. Do not
use scratch paper – otherwise you risk losing part credit. Cross out rather than erase any work that
you wish the grader to ignore. Justify what you do. Box or circle your answer.

1. (35 points)
One circularly polarized photon is trapped be-
tween two parallel perfectly conducting plates,
separated by a distance L, which are parallel to
the photon’s electric and magnetic fields.

a. (10 points) If the photon has the smallest
definite energy possible under these circum-
stances, at a point halfway between the
plates describe a possible motion of its elec-
tric field vector.

Solution. The electric field of the light �E is par-
allel to the conducting plates, so �E must vanish
at the plates. Therefore we have

�E(0, t) = �E(L, t) = 0 .

Of course, �E(z, t) is a solution to the wave equa-
tion: ( ∂2

∂z2
− 1
c2
∂2

∂t2
)
�E(z, t) = 0 .

In order to satisfy both the wave equation and
the boundary conditions, we choose

�E(z, t) = E0 sin (kz) exp (−iωt)
(
x̂± iŷ) ,

where
k =

nπ

L
where n = 1, 2, ...

The smallest definite energy is achieved when
k = π/L (consequently ω = πc/L), in which case
we have for the electric field:

�E(z, t) = E0 sin
(πz
L

)
exp

(−iπct
L

)(
x̂± iŷ) .

Halfway between the plates (z = L
2 ), we find that

�E(
L

2
, t) = E0 exp

(−iπct
L

)(
x̂± iŷ) .

So �E moves in a circle with angular frequency
ω = πc/L.

b. (10 points) Same for its magnetic field vec-
tor.

Solution. From Maxwell’s equations,

∇× �E = −∂
�B

∂t
.

Therefore we have

∂By

∂t
= −∂Ex

∂z
∂Bx

∂t
=
∂Ey

∂z
.

From the above relations, it follows that the spa-
tial dependence of �B(z, t) is given by cos (πz/L).
Halfway between the plates �B = 0.

c. (15 points) For this plate configuration,
making no restriction on the photon en-
ergy, evaluate the density of photon states

d2N

dLdλ

where N is the number of states and λ is the
photon wavelength � L. Take into account
the possible states of circular polarization.



Solution. We have from part (a.) that k =
nπ/L, so in terms of wavelength λ (recalling
k = 2π/λ):

n =
2L
λ
.

Since we have 2 possible polarization states, the
total number of states N as a function of wave-
length is

N =
4L
λ
.

The derivative with respect to wavelength is

dN

d|λ| =
4L
λ2

and so we obtain for the density of photon states

d2N

d|λ|dL =
4
λ2
.

2. (35 points)
A linearly (x̂) polarized plane EM wave trav-
elling along ẑ is incident on an opaque baffle
located in the plane z = 0. The baffle has two
slits cut in it, which are of infinite extent in the
ŷ direction. In the x̂ direction, the slit widths
are each a and their center-to-center distance is
d. (Obviously d > a, but you may not assume
that d� a.) The top and bottom slits are each
an equal distance from x = 0.

The diffracted image is viewed on a screen lo-
cated in the plane z = L, where L � d; also
λL� d2, where λ is the EM wavelength.

Quarter-wave plates are placed in each slit. They
are identical, except that the top plate’s “slow”
(high-index) axis is along (x̂+ ŷ)/

√
2 (+45◦ with

respect to the x̂ axis), while the bottom plate’s
slow axis is along (x̂− ŷ)/

√
2 (−45◦ with respect

to the x̂ axis).

a. (15 points) What is the state of polarization
of the diffracted light that hits the center of
the screen, at x = y = 0? Explain.

Solution. Light that exits the top slit (slow
axis at +45◦) is in a state

1√
2

(
1 i
i 1

) (
1
0

)
=
1√
2

(
1
i

)
,

or left-hand circular polarization; light that ex-
its the bottom slit (slow axis at −45◦) is in a
state of polarization

1√
2

(
1 −i
−i 1

) (
1
0

)
=
1√
2

(
1
−i

)
,

or right-hand circular polarization. At the cen-
ter of the screen, light from each slit contributes
equally; the state of polarization is proportional
to

1√
2

(
1
i

)
+
1√
2

(
1
−i

)
=

√
2

(
1
0

)
;

it is x̂ polarized like the incident beam. (See
Fowles page 34 and Table 2.1 for the Jones
vectors and matrices.)

b. (20 points) At what diffracted angle θx does
the first minimum of the irradiance occur?

Solution. Right- and left-hand polarized states
are orthogonal; they do not interfere. To see
this formally (though this is not required as part
of the solution), consult Fowles Eq. 3.11; the
interference term there is proportional to

E∗
2 ·E1 ∝ ( 1 −i∗ )

(
1
i

)
= 1 + i2 = 0 .

Since there is no interference between the light
from the top and bottom slit, the resulting irra-
diance is just twice that expected from a single
slit of width a. According to Fowles Eq. 5.18,
this pattern is proportional to

( sinβ
β

)2

,

where in this problem’s notation

β =
1
2
ka sin θx

and k = 2π/λ. The first minimum occurs at
β = π, or

sin θx =
λ

a
.



3. (35 points)
A lens has an f -number (ratio of focal length to
diameter) equal to F . The lens is used to concen-
trate sunlight on a ball whose diameter is equal
to the diameter of the sun’s image. The ball is
convectively and conductively insulated, but it
freely radiates energy outward so that its tem-
perature can approach an equilibrium value Tb.

a. (10 points) The sun subtends a half-angle
of ≈ 0.005 radians. Is the size of its image
“diffraction-limited”, i.e. determined largely
by the effects of diffraction? Make an order-
of-magnitude argument assuming that the
lens is a typical camera lens, with a radius
of order 10−2 m.

Solution. The image of a distant point source
formed at the focal plane of a lens is actually
a Fraunhofer diffraction pattern where the aper-
ture is the lens opening. The image becomes
diffraction limited when the size of the image
is near the size of an Airy disk. From this
condition, we have the Rayleigh criterion:

2θ >
1.22λ
D

,

where θ is the half-angle subtended by the sun
(≈ 0.005 rad), λ is the wavelength of the light,
and D is the diameter of the lens. We can as-
sume λ ≈ 600 nm for the sun, D = 2× 10−2 m,
so the image is not diffraction limited if

θ > 2.5× 10−5 rad ,

which is clearly satisfied in this problem. Thus
the image is not diffraction limited.

(Note that this question requires only an order-
of-magnitude analysis. So you don’t need to
know anything about the details of Rayleigh’s
criterion, or Airy disks, to get full credit; all that
you need to say is that the diffraction angle is of
order λ/D, which here is much smaller than the
sun’s angular width.)

b. (25 points) Assuming the sun to be a black-
body of temperature T , calculate the ball’s
temperature Tb. Neglect reflection by the
lens. (Hint: your answer should depend
only on T and F .)

Solution. The sun radiates total power

PS = σT 4
S · 4πR2

S ,

where TS is the sun’s surface temperature and
RS is the sun’s radius. The lens collects a
fraction of this light power given by

∆Ω
Ω
=
π(D/2)2

4πR2
ES

,

where RES is the distance from the earth to the
sun. The entirety of this light is focused on the
ball. The ball re-radiates power

Pb = σT 4
b · 4πR2

b .

In equilibrium we have the light power absorbed
by the ball equal to the light power radiated by
the ball. Setting the two equal, we obtain

T 4
S

D2

4
R2

S

R2
ES

= T 2
b r

2
b .

To relate this result to F , we note that 2rb/f =
1/F where f is the focal length. Also we have
rb/f ≈ RS/RES ≈ θ, where θ is the half-angle
subtended by the sun. Employing the above
relations in the equation relating the sun’s tem-
perature to the ball’s temperature:

T 4
b = T

4
S

d2θ2

4r2b
=

1
16F 2

T 4
S .

So we find that

Tb =
TS

2

√
1
F
.

4. (30 points)
You are given a Hamiltonian

H = 1
2
(LR+RL) ,

where R and L are two operators such that

[L,R] = E0



with E0 a constant. You are also given an
eigenfunction uE(x) of H, such that

HuE = EuE ,

where E, another constant, is the energy eigen-
value.

Prove that

H(RuE) = (E + E0)(RuE) ,

i.e. R is a raising operator.

Solution.

H(Ru) =
1
2
(
LRR+RLR

)
u

=
1
2
(
LRR−RLR+ 2RLR)

u

=
1
2
(
[L,R]R+ 2RLR

)
u

=
1
2
(
E0R+ 2RLR

)
u

=
1
2
(
E0R+RLR−RRL+RRL+RLR)

u

=
1
2
(
E0R+R[L,R] +RRL+RLR

)
u

=
1
2
(
2E0R+R(RL+ LR)

)
u

=
1
2
(
2E0R+R(2H)

)
u

= (E + E0)Ru .

5. (35 points).
Consider a harmonic oscillator potential

V (x) =
1
2
mω2

0x
2

in one dimension. An even number N of parti-
cles of massm are placed in this potential. There
are no special interactions between the particles
– no significant mutual electrostatic repulsion,
gravitational attraction, etc., compared to the
strength of their interaction with the harmonic
potential itself.

You may use what you already know about the
levels of a harmonic oscillator.

The system is in its ground state, i.e. T = 0
Kelvin.

Calculate the total energy E of the N -particle
system, relative to the bottom of the well, for
the cases

a. (10 points) The N particles are distinguish-
able.

Solution. The energy levels of a harmonic
oscillator are

En =
(
n+

1
2

)
h̄ω0 ,

where n = 0, 1, 2 . . . . Nothing prevents mutually
noninteracting distinguishable particles from oc-
cupying the same spatial wavefunction. At T = 0
this will be the ground state n = 0. Then

E =
N

2
h̄ω0 .

b. (10 points) The N particles are identical
bosons.

Solution. Same as (a.). All the identical bosons
are in the ground state at T = 0.

c. (15 points) The N particles are identical
spin 1

2 fermions.

Solution. Each spatial wavefunction can ac-
commodate two identical spin 1

2 fermions, one
with spin up, one with spin down. At T = 0 the
lowest occupied state is the ground state, with
energy

E0 =
1
2
h̄ω0 ,

while the highest-energy occupied state has
(Fermi) energy equal to

EF = E0 +
(N
2

− 1
)
h̄ω0 .

The total energy is N times the average energy,
which is the mean of E0 and EF :

E = N
E0 + EF

2

=
N

2

(
2E0 +

(N
2

− 1
)
h̄ω0

)

=
N2

4
h̄ω0 .



6. (30 points)
In the rest frame S ′ of a star, ignoring the grav-
itational redshift, some of the photons emitted
by the star arise from a particular atomic tran-
sition with an unshifted wavelength λ′. When
these photons are observed on earth, they are
shifted to longer wavelength λ = λ′ + ∆λ be-
cause the star is receding from the earth with
velocity β0c due to the Hubble expansion of the
universe. Astronomers measure this redshift by
means of the parameter z, defined by

z ≡ ∆λ
λ′

.

For light, the relativistic Doppler shift is

ω =
ω′

γ0(1− β0 cos θ)
.

a. (10 points) In the “neighboring star” limit
β0 � 1, show that β0 is approximately equal
to the measured z.

Solution.

ω =
ω′

γ0(1− β0 cos θ)

=
2πc
λ

1/λ =
1/λ′

γ0(1− β0 cos θ)
λ

λ′
= γ0(1− β0 cos θ)

∆λ
λ′
= γ0(1− β0 cos θ)− 1

z = γ0(1− β0 cos θ)− 1 .

For a receding star, cos θ = −1, and so

z = γ0(1 + β0)− 1 .

When β0 � 1, γ0 ≈ 1 to second order in β0.
Then

z ≈ 1 + β0 − 1 = β0 .

b. (10 points) In the “distant star” limit γ0 �
1, derive an expression for γ0 in terms of
the measured z.

Solution. When γ0 � 1, β0 ≈ 1. Then, from
the solution to (a.),

z ≈ 2γ0 − 1
γ0 ≈ 1 + z

2
.

Full credit is given with or without the “1” term.

c. (10 points) The observation of Supernova
1987A marked the dawn of a new astron-
omy, in which humans are able to detect
fermions (neutrinos) as well as bosons (pho-
tons) from (spatially or temporally) resolved
sources outside the solar system. About a
dozen such neutrinos were detected in each
of two huge underground water tanks. The
photons from Supernova 1987A were red-
shifted by

z ≈ 10−5 .

Taking the Hubble constant to be

H0 ≈ 0.7× 10−10yr−1 ,

for how many years did the neutrinos from
SN1987A travel before humans observed
them?

Solution. From Rohlf Eq. (19.17) (necessary
for solving assigned problem 19.18), the velocity
v with which SN1987A is receding from Earth is

v = H0d ,

where d is its present distance from Earth. Neu-
trinos are nearly massless and travel essentially
at the speed of light c. Using the result of part
(a.), the travel time T of the neutrinos from
SN1987A was

T =
d

c

=
v

H0c

=
β0

H0

≈ z

H0

≈ 1× 10−5

0.7× 10−10 yr−1

≈ 1.4× 105 yr .


